Test

https://zhuanlan.zhihu.com/p/24709748 矩阵求导术 $$x = (d-As)^TN^{-1}(d-As)$$ $$\delta M^{-1} = -M^{-1}(\delta M)M^{-1}$$ $$dx (scalar)=(-Ads)^TN^{-1}(d-As) + (d-As)^TN^{-1}(-Ads) =-2(d-As)^TN^{-1}(Ads)$$ $$dx = (\frac{\partial x}{\partial s} )^T ds$$ $$\frac{\partial x}{\partial s} = -2 A^TN^{-1}(d-As) = 0$$ $$s = (A^TN^{-1}A)^{-1}A^TN^{-1}d$$ \begin{array}{|r|l|l|} \hline No. &Method &Specification\\ Paper&\text{Map-making methods} &Tegmark 1997 \\ \hline 1&Generalized COBE &W=[A^tMA]^{-1}A^tM\\ 2&Bin averaging &W=[A^tA]^{-1}A^t\\ 3&COBE &W=[A^tN^{-1}A]^{-1}A^tN^{-1}\\ 4&Wiener 1 &W=SA^t[ASA^t+N]^{-1}\\ 5&Wiener 2 &W=[S^{-1}+A^tN^{-1}A]^{-1}A^tN^{-1}\\ 6&Saskatoon &W=[\eta S^{-1}+A^tN^{-1}A]^{-1}A^tN^{-1}\\ 7&TE96 &W={\bf{\Lambda}} SA^t[ASA^t+N]^{-1},\>\>(WA)_{ii}=1\\ 8&TE97 &W={\bf{\Lambda}}[\eta S^{-1}+A^tN^{-1}A]^{-1}A^tN^{-1},\>\>(WA)_{ii}=1\\ 9&\text{Maximum probability} &\text{Nonlinear method if non-Gaussian}\\ 10&\text{Maximum entropy} &\text{Nonlinear method}\\ \hline \label{MethodsTable} \end{array}