Top
Back
Test
https://zhuanlan.zhihu.com/p/24709748 矩阵求导术
x
=
(
d
−
A
s
)
T
N
−
1
(
d
−
A
s
)
δ
M
−
1
=
−
M
−
1
(
δ
M
)
M
−
1
d
x
(
s
c
a
l
a
r
)
=
(
−
A
d
s
)
T
N
−
1
(
d
−
A
s
)
+
(
d
−
A
s
)
T
N
−
1
(
−
A
d
s
)
=
−
2
(
d
−
A
s
)
T
N
−
1
(
A
d
s
)
d
x
=
(
∂
x
∂
s
)
T
d
s
∂
x
∂
s
=
−
2
A
T
N
−
1
(
d
−
A
s
)
=
0
s
=
(
A
T
N
−
1
A
)
−
1
A
T
N
−
1
d
N
o
.
M
e
t
h
o
d
S
p
e
c
i
f
i
c
a
t
i
o
n
P
a
p
e
r
Map-making methods
T
e
g
m
a
r
k
1997
1
G
e
n
e
r
a
l
i
z
e
d
C
O
B
E
W
=
[
A
t
M
A
]
−
1
A
t
M
2
B
i
n
a
v
e
r
a
g
i
n
g
W
=
[
A
t
A
]
−
1
A
t
3
C
O
B
E
W
=
[
A
t
N
−
1
A
]
−
1
A
t
N
−
1
4
W
i
e
n
e
r
1
W
=
S
A
t
[
A
S
A
t
+
N
]
−
1
5
W
i
e
n
e
r
2
W
=
[
S
−
1
+
A
t
N
−
1
A
]
−
1
A
t
N
−
1
6
S
a
s
k
a
t
o
o
n
W
=
[
η
S
−
1
+
A
t
N
−
1
A
]
−
1
A
t
N
−
1
7
T
E
96
W
=
Λ
S
A
t
[
A
S
A
t
+
N
]
−
1
,
(
W
A
)
i
i
=
1
8
T
E
97
W
=
Λ
[
η
S
−
1
+
A
t
N
−
1
A
]
−
1
A
t
N
−
1
,
(
W
A
)
i
i
=
1
9
Maximum probability
Nonlinear method if non-Gaussian
10
Maximum entropy
Nonlinear method