- Back
- Continuity_equation
- Euler_equation
- Poisson's_equation
- Euler_of_state
\begin{equation}
\begin{aligned}
\vec{a}_{\mathrm{con}} &=\underbrace{(\vec{v} \cdot \vec{\nabla})}_{\text{directional derivative}} \vec{v} \\
&=\left[\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \cdot\left(\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right)\right] \cdot\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \\
&=\left[v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z}\right] \cdot\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \\
&=\left(\begin{array}{c}
v_{{x}} \frac{\partial v_{{x}}}{\partial x}+v_{{y}} \frac{\partial v_{{x}}}{\partial y}+v_{{z}} \frac{\partial v_{{x}}}{\partial z} \\
v_{{x}} \frac{\partial v_{{y}}}{\partial x}+v_{{y}} \frac{\partial v_{{y}}}{\partial y}+v_{{z}} \frac{\partial v_{{y}}}{\partial z} \\
v_{{x}} \frac{\partial v_{{z}}}{\partial x}+v_{{y}} \frac{\partial v_{{z}}}{\partial y}+v_{{z}} \frac{\partial v_{{z}}}{\partial z}
\end{array}\right)
\end{aligned}
\end{equation}
$$E^2 = m^2c^4 + p^2c^2$$
An electromagnetic wave impinging on a charged particle, such as an electron, creates an oscillating
motion of the charge. In turn, the oscillating charge generates radiation. This process is known as
scattering. If the motion of the charge is nonrelativistic, the process is called Thompson scattering.
The relativistic case is called Compton scattering.
https://phas.ubc.ca/~hickson/astr530/ASTR530_2015_ch8.pdf
http://www.ira.inaf.it/~ddallaca/L05_Scatt.pdf
Compton scattering occurs when the energy of the incident photon is suciently great that significant momentum is imparted to the charged particle. As a result, the energy of the photon is
changed by the scattering process.